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On the asymptotic form of the recursion method basis vectors 
for periodic Hamiltonians 
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$ Physics Department, UCD, Belfield, Dublin, Ireland 

Received 8 March 1984 

Abstract. In previous studies of the recursion method, little attention has been paid to the 
properties of the basis vectors. We present the first detailed study of these for the case of 
a periodic Hamiltonian. In the examples chosen, the probability density scales linearly 
with n as n + CC, whenever the local density of states is bounded. Whenever it is unbounded 
and the recursion coefficients diverge, different scaling behaviour is found. These findings 
are explained and a scaling relationship between the asymptotic forms of the recursion 
coefficients and basis vectors is proposed. 

1. Introduction 

The recursion method (Haydock 1982) has been applied to a wide range of problems 
in solid state physics, involving electronic, vibrational and magnetic Hamiltonians, 
both periodic (perfect crystal) and disordered (amorphous solid, alloy). 

The method starts with the choice of an initial vector, often localised at the origin. 
It proceeds by the recurrence relation 

to define successive basis vectors lu,), and coefficients a,, b,. This transforms the 
Hamiltonian into tridiagonal form. In physical terms this corresponds to a linear chain 
Hamiltonian with diagonal elements a, and nearest-neighbour coupling b,. The proper- 
ties of these recursion coefficients have been widely studied (Turchi et a1 1982, Beer 
and Pettifor 1983, Haydock 1982, 1980, etc). On the other hand little attention has 
been paid to the basis vectors. Hodges et a1 (1980) examined these for the case of a 
disordered Hamiltonian, in the mistaken belief that the periodic case was well under- 
stood. It has indeed been generally assumed that the basis vectors generated for a 
periodic Hamiltonian move outwards linearly from the origin but nothing approaching 
a rigorous justification of this assumption has yet been presented. For simple tight- 
binding Hamiltonians it is true, and trivially obvious, that the leading edge of the basis 
function moves out linearly, since it takes n applications of (1) to generate a non-zero 
element n steps from the origin (where a step corresponds to a non-zero coupling in 
the Hamiltonian). The question is-does such a relationship hold for, say, the mean 
radius of the basis vector, in the limit n + CO? 

We shall address this question in various ways. Firstly, numerical calculations for 
simple tight-binding Hamiltonians will be shown to exhibit the anticipated linear 
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scaling, not only for the mean radius but also for the entire profile of the probability 
distribution (see also Raghavan 1984). However there are some surprises. In particular 
the probability density has the same anisotropy as the Hamiltonian, even in the 
asymptotic regime. Also, Hamiltonians with unbounded local densities of states 
associated with the initial vector will be shown to produce different behaviour, by 
recourse to a model which can be treated analytically. This leads us to suggest a 
relation between the scaling behaviour of the recursion coefficients, the basis functions 
and the form of the local density of states. Finally in $ 5 we shall attempt to explain 
some of these results. 

2. Numerical results 

We shall look first at a simple tight-binding Hamiltonian of the form 

neighbours 

where I and I '  are nearest-neighbour sites of a two-dimensional periodic structure. 
The initial vector luo) has zero elements everywhere except at the origin. The basis 
vectors are calculated using (1)  in the usual way (Haydock 1982). 

For the square lattice in two dimensions (with lattice constant taken to be unity), 
the subsequent basis vectors are contained in a square of side n, oriented as 
shown in figure 1. Each has a probability density defined by 

(3) Pn(r> = c l ( I l ~ n ) 1 2 m -  rr) 

where rl denotes the position of site I. It is also useful to define the mean radius 

Figure 1. Schematic diagram of the probability density for the nth recursion basis vector 
lu,) on a square lattice. The leading edge of the basis vector is shown by the squarz. All 
points on this square lie n steps from the origin. The region of substantial probability 
density is roughly indicated by the shaded area. Note that the probability density is 
symmetric but not isotropic. 
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and root-mean-square radius pn according to 

P', =c r ? l ( k 4 2 .  

Calculation of the two radii gives an immediate indication of scaling behaviour. 
In the present case, they are both found to vary linearly with n, in the limit n +CO, for 
all the structures listed in table 1, which gives the coefficients of proportionality. Also 
indicated in each case is the corresponding coefficient for the closest point on the 
leading edge mentioned in 8 I .  The results listed imply that the probability density is 
concentrated in a shell close to the leading edge. It remains to examine the form of 
this shell. 

Table 1. Scaling coefficients for the mean radius rn and R M S  radius p , ,  

Structure 

Numerical estimates 
Approximate 

r,,I n P n l n  theory 

ZD square 0.645 0.653 0.707 
triangular 0.710 0.723 0.866 
hexagonal 0.615 0.626 0.750 

3~ simple cubic 0.51 1 0.517 0.577 

Angular and radial distribution functions may be defined according to 

Ffl(W0 = c I ( ~ l U f l ) l Z  ( 6 )  
o s o ,  < ocse 

and 

Gfl(r)Sr = c l ( ~ l % ) l * .  (7) 
r s  r ,  < r + 6 r  

These have been calculated for 1 S n s 99 to investigate the form of P,,(r). The radial 
function behaves as 

GfI(r)-- n - ' g ( r / n >  (8) 

Ffl( e + f (  0) (9) 

P,,(r) - n - ' p ( n - ' r )  (10) 

as shown in figure 2. The angular function behaves as 

where f ( 0 )  is as shown in figure 3. Together these results imply that 

as anticipated, but the anisotropy of this function ( f (  0) # constant) was unexpected. 
Equation (8) should be compared with 

G,,(r)- n - a g ( n - a r )  (1  1) 

(two dimensions) (12) 

found by Hodges et al (1980) for the disordered case, where 
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Figure 2. Histograms of the radial distribution function for the square lattice, rescaled as 
nG,(xn),  to show linear scaling for the cases ( a ) - ( d ) ,  n = 20,40,60, 80 respectively. 

Figure 3. The asymptotic form of the angular distribution function f(0) for the square 
lattice, for 0 between 0" (the (IO)  direction) and 45" (the (1 1) direction), calculated by 
averaging F,(0) from n = 75 to 99. 

and it was suggested that 

( d  dimensions). (13) (y = d-' 

The radial distribution function G,,(r) is even more sharply peaked at the leading 
edge than is apparent in figure 2. GSo(r) is plotted in figure 4 with a smaller bin size. 
It can be seen that about half of its weight lies between r = 5 5  and r=57.  The 
closest point of the leading edge is at r = 8 0 / h =  56.6. 

Such linear scaling implies that the basis vectors do not form a complete set in the 
original space spanned by the vectors IZ). This can be seen as follows. 

If the transformation were complete, this would require that 

c I%)(Ufll =c I N 4  (14) 
n I 
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I J L  I 

I I 4 
0'15 ' 10  

Rescaled radius x 

Figure 4. The scaled radial distribution function n G , ( x n )  for n = 80, plotted with a sgaller 
bin size than in figure 2 to emphasise its sharply peaked structure at r / n  = x = I / J ~ .  

and hence 

1 I(unIz)12= 1 
n 

for all I. 
Linear scaling means that 

n 

Since the integral is just a constant (1.64 for the case at hand-see figure 5) ,  this is 
incompatible with (1 5 ) ,  

) ; I . . ,  , , , , 

0 20  40 60 80 
No of l eve ls  n 

Figure 5. The integral I, = j:(n/r)Gn(r) dr, calculated for n = 1-99. This approaches the 
constant value 1.644 as n + CO, providing further confirmation of linear scaling. 

3. Analytic model with bounded density of states 

In this section we examine a simple model which is susceptible to a straightforward 
analytic treatment, and shows similar behaviour to that found in 9 2. It consists merely 
of the free electron model, with an appropriate initial basis function. The Hamiltonian 
is 

H = -(h2/2m)V2 (17) 
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and the initial function has circular symmetry and the radial dependence 

uo(r )  = K " 2 r - ' J l ( A r )  (18) 

where J is a Bessel function, and A is an arbitrary length. This was obtained by 
integrating the eigenfunctions of (17) up to a maximum energy E = (h2/2m)A2. The 
local density of states associated with the initial function is 

n , ( E )  = E - ' ,  O < E < E ,  

= 0, otherwise, 

and the recursion coefficients (Haydock 1980) 

a, = ; E ,  b, = ;n&(4n2 - l)-"2. 

The basis functions are 

u , ( r )  = [(2n + 1)"2/~ '~2r ]J2n+l (Ar) .  

The corresponding radial probability distribution is given by 

Gn(r)=[2(2n + l)/'rIJ;n+~(Ar). 

There is of course no angular dependence, since (1 7) has circular symmetry. 
The asymptotic form of this function is given by (8) with 

d x )  = 0, Ax < 2, 

Ax > 2. = 4/ d x ( A 2 x 2  -4j1l2, 

This is illustrated in figure 6, which also shows that G converges quite rapidly to its 
asymptotic form. 

I L. 1 

I 

I 

2 6 a 10 
Rescaled radius Ax Rescaled radius A x  

Figure 6. The scaled radial distribution function for the Hamiltonian and starting vector 
of 5 3, for n = I ( '  . .)  and n = 4 (---). The asymptotic form is shown by the full curve. 

The transformation is again not complete. The quantity 

(23) 
1 "  A 2  f u:(r )  = 7 2 (2n + l)J;,,+'(Ar) = - [ J i ( A r )  +J:(Ar)], 

n = O  r r  n = O  4T 

which corresponds to (16), falls off as r-' at large r (Abramowitz and Stegun 1965). 
This is the same behaviour as was noted in § 2. 
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4. Analytic model with unbounded local density of states 

By changing the choice of initial basis function we shall now show that this is critical 
to the asymptotic properties under study, since these are changed if the local density 
of states is unbounded. 

The Hamiltonian of $ 3 is used again. For convenience, we shall discuss the 
three-dimensional case, since we can avail ourselves of the previous work of Haydock 
(1980) for this. Similar results apply in two dimensions. 

We choose for the initial function the Gaussian 

uo(r) = ( A / V % ) ~ ”  exp[-(Ar)‘/2] (24) 

for which the local density of states is 

no(E) = ( ~ / E ) ( E / E ~ T ) ” ~  e-€”, E>O, 

= 0, E < O .  (25) 
The recursion coefficients are 

(26) a, = &(2n +;), bn = ~ [ n ( n  +dl 9 

u,(r) = [ i ! n ! / ( n  +~)!]”’L!,’’(A2r2)uO(r) (27) 

I 1 / 2  

and the basis vectors are 

where L!,” is a Laguerre polynomial of order 4. 

in the case of a bounded local density of states. 
Note that a, and b, diverge linearly, in contrast to the convergence to finite limits 

The mean radius of (27) is 

rn=(4/rrh)(n + $ ) ! / n ! - ( 4 / ~ A ) n ’ ” ,  (28) 

again contrasting with the previous case. Presumably other choices of initial function 
can generate other powers. It is tempting to speculate on the relation between the 
indices in the asymptotic forms r - nil, a,, b, - n p ,  and n,(E)- exp(-EY). The 
coefficients a, and b, can be calculated directly from no(E). For n,(E)- exp(-E), 
b - n, while if n,(E)  - exp(-E’), then b - n1’2 (Gaspard and Cyrot-Lackmann 1973). 
We suggest that ,B = y - ’ .  The nth basis state corresponds to an energy a, - n p .  As n 
increases the basis functions move outwards in real space and also, for p > 0, are 
composed of states of increasing energy. These higher energy states can be localised 
in the same region of space as were the previously used states. Hence increasing p 
should reduce the rate of radial expansion. We suggest a = (1 +p)-’, which is consistent 
with the results given above for p = 0 and 1. It will be interesting to see whether this 
is sustained by further tests. 

5. General theory 

We here seek to understand why the probability density function P,(r) scales linearly 
with n for asymptotically constant recursion coeiTicients. We have as yet no explanation 
for the form of the scaling function but will give an approximate treatment which leads 
to scaling behaviour. The argument (essentially due to Hodges, private communication) 
is readily adapted to obtain the result r, - n”’ in the case where a, and b, - n. 
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Consider a linear chain whose recursion coefficients a, and b, approach the constant 
values a and b as n +CO. The eigenfunctions of this chain are then asymptotically of 
the form 

n 

so, for large n, 

/U,)= 1: d K  sin(Kn)l+,). 

In real space, is an eigenstate having the symmetry of the starting orbital luo) and 
of the structure under consideration (e.g. the two-dimensional square lattice). Near 
one of the band edges and for large r, + K  must be 

G K  = (sin kr)/ r(d- ' ) '2 ,  (3 1) 
where d is the dimensionality of the lattice. 

If we compare energies on the linear chain and in the band structure of the 
d-dimensional lattice we can relate k and K .  For the case of the 2~ square lattice 
k2 = 2 K 2 .  In general k2 = c K 2 .  So, using (31) as an approximation to ( C I K  in (30), we 
obtain 

= r - ( d - l ) / 2  1: d K  sin Kn sin(&Kr) 

(32) 

In the limit n + 00, the radial probability distribution G,(r) behaves as 

Gn(r)-  G(n/&-r) (33) 
where c = 2  for the square lattice. Hence we have shown that, within the stated 
approximation, G, will scale linearly with n and the radial probability function is 
confined to a shell at the leading edge of the recursion vector. However, this argument 
fails to account for the detailed form of the function, described in previous sections. 
Nor is it clear how the argument may be improved. Note also that it fails to explain 
the anisotropy of the actual function. 

To calculate the full form of the scaling function, we should use the exact expression 
for the basis vector. 

This is given by (Haydock 1980) 

where I& )  is a lattice wavefunction, the sum over k is over the full Brillouin zone and 
P, is an orthogonal polynomial of order n, defined by 

b n  + I  Pn+,(E) = (E - an)gn(E) - b n p n -  I (  E ) .  (35) 
For a Hamiltonian defined on a lattice, the wavefunctions are simply Bloch states and 
hence (34) becomes 
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We are unable to find the form of (36) in any useful limit, despite the availability 
of general asymptotic forms for orthogonal polynomials (Szego 1939). It is clear, 
however, that the anisotropy of the scaling function is associated with the r dependence 
of the contour integral. It would also appear that the detailed form of the function is 
dependent on the full band structure and not just the band edges. 

6. Conclusion 

In our numerical calculations for simple tight-binding Hamiltonians we have found 
linear scaling of the probability density function in every case. Our approximate theory 
is consistent with this. However, the scaling function was found to have a much richer 
structure in the numerical calculations than was expected. It is anisotropic and, while 
it is sharply peaked at the distance at which it is concentrated in the approximate 
theory, it has a tail extending back to the origin. 

Analytically soluble models, which do not involve a lattice, indicate that this linear 
scaling is characteristic of an ordered Hamiltonian with a bounded density of states. 
For an unbounded density of states with recursion coefficients increasing linearly with 
n, the probability density expands as n ” 2 .  

The behaviour described here is to be contrasted with that previously found by 
Hodges et al (1980) for disordered Hamiltonians. In this case the probability density 
appears to expand as n ” d  in d dimensions. The transition between the two regimes, 
as disorder is increased from zero, remains to be explored. 
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